

Mangrove Forest Carbon Sequestration

Businesses are increasingly aware of their "carbon footprint" and are actively looking for ways to offset the environmental impact of their operations. In addition, a growing number of consumers look for businesses that offer a way to make a positive impact through their support. Eden Reforestation Projects (Eden) offers a simple and cost-effective way to deliver this value to your business and your customers.

Trees & Carbon

The key benefits of reforestation are that trees are extremely efficient at carbon sequestration and one of the most effective tools in the fight against dangerous Greenhouse Gases that contribute to climate change and global warming. Trees convert the carbon dioxide (CO2) into plant matter, holding this material for the life of the tree and beyond.

Why Mangroves?

Scientific studies have shown that mangroves "sequester carbon at a rate two to four times greater than mature tropical forests" and contain "the highest carbon density of all terrestrial ecosystems" (Fatoyinbo et al, 2017). Mangroves are also a key part of coastal ecosystems, and "renowned for an array of ecosystem services, including fisheries and fiber production, sediment regulation, and storm/tsunami protection" (Donato et al, 2011). The key to mangroves is the large amounts of biomass stored underground in the extensive root system. These roots support the large trees in muddy coastal areas where mangroves thrive (Komiyama et al, 2008).

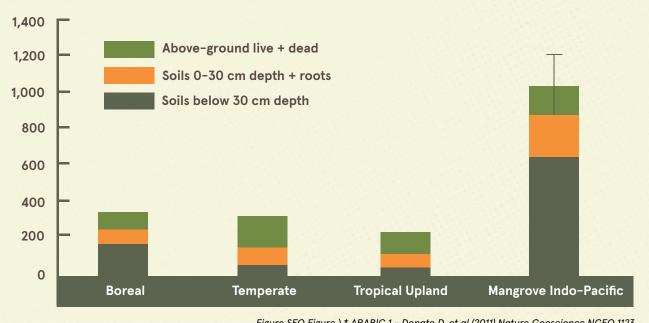


Figure SEQ Figure * ARABIC 1 - Donato D, et al (2011) Nature Geoscience NGEO 1123

Calculating CO2 Offsets from Mangrove Forests

Based on the studies cited below, Eden has established a benchmark of 840 metric tons (t) of Carbon (C) per hectare of mature mangrove forests. This is based on an average tree growth life of 25 years. From this number, we can calculate the amount of CO2 removed from the atmosphere and turned into plant biomass per hectare of forest and estimate the amount of CO2 sequestered per tree based on the growth life and planting density.

Summary

Mangroves are one of the most effective and economic methods of offsetting carbon emissions. Each mangrove tree planted by Eden removes over 308kg (680lbs) of CO2 from the atmosphere over the growth life of the tree. This calculates to an average of 12.3kg per year per tree.

	Units	Carbon Sequestered (C)	Equivalent in Carbon Dioxide (CO ₂)
Carbon per Area Planted	Metric Tons / Hectare	840	3082.8
	US Tons / Acre	374.7	1,375.2
Carbon per Tree Planted*	Kg / Year (Average)	3.4	12.3
	ite / ieai (Average)		.2.0
	Kg / Lifetime (25 Years)	84	308.3
	lbs / Year (Average)	7.4	27.2
	lbs / Lifetime (25 Years)	185.2	679.7

Contact Eden Reforestation Projects at Debbie@edenprojects.org to learn how you can offset emissions caused by your business.

Calculations

First, calculate the ratio of CO2 to Carbon based on the atomic weights of each molecule.

$$3.67 = (12+16+16) \text{ (atomic weight of CO2)}$$
12 (atomic weight of C)

Multiply this ratio by the amount of C per hectare of mangrove forest to get the amount of CO2 sequestered per hectare of mangrove forest.

3,082.8 t of CO2 per hectare = 3.67 x 840 t of C

To calculate the annual CO2 offset, we divide the total amount of CO2 per hectare by the growth life of the trees, or 25 years.

123.312 tons of CO2 per year per hectare = 3,082.8 tons per hectare 25 years

Eden plants mangrove trees at a density of 10,000 trees per hectare. Using this number, we can estimate the average CO2 offset per tree per year, and the total offset per tree over the growth life of the tree. The actual offset is lower in the early years and peaks between 10 and 20 years after planting.

12.3 kg of CO2 per tree per year = 123.312 tons of CO2 per hectare per year

10,000 trees per hectare

References

Fatoyinbo T, Feliciano E., Lagomasiano D, Lee S K, Trettin C (2017) Estimating Mangrove Aboveground Biomass from Airborne Lidar Data: A Case Study from the Zambezi River Delta

Donato D, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience NGEO1123, Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests A review. Aquatic Botany 89.

Information provided is based on research. Eden does not offer verified carbon credits.